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Abstract. A deterministic global optimization method is described for identifying the global
minimum potential energy conformation of oligopeptides. The ECEPP /3 detailed potential energy
mode] is utilized for describing the energetics of the atomic interactions posed in the space of the
peptide dihedral angles. Based on previous work on the microcluster and molecular structure
determination [21, 22, 23, 24], a procedure for deriving convex lower bounding functions for the
total potential energy function is developed. A procedure that allows the exclusion of domains
of the (¢, ) space based on the analysis of experimentally determined native protein structures
is presented. The reduced disjoint sub-domains are appropriately combined thus defining the
starting regions for the search. The proposed approach provides valuable information on (i)
the global minimum potential energy conformation, (ii) upper and lower bounds of the global
minimum energy structure and (iii) low energy conformers close to the global mimimum one. The
proposed approach is illustrated with Ac—Ala;—Pro—-NHMe, Met—enkephalin, Leu—enkephalin, and
Decaglycine,
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1. Introduction

The protein folding problem is one of the most important problems in biochemistry.,
Predicting how a protein would fold is of paramount academic and industrial inter-
est. Many products of the biotechnology industry are novel proteins. Knowledge of
how the protein would fold would allow one to predict and fine~tune ite chemical
and biclogical properties. This would greatly simplify the tasks of interpreting data
collected by the hurnan genome project, understanding the mechanisms of heredi-
tary and infectious diseases, designing drugs with specific therapeutical properties,
and growing biclogical polymers with specific material properties. Although, small
molecules exist in an ensemble of low—energy conformations [41], proteins in their
biologically active (native) state exist in a well-defined, recognizable conformation
with small fluctuations around this average. There is considerable evidence that
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proteins do fold spontaneously, both in vive and in vitro, into their native con-
formations. This native conformation is uniquely determined by the amino acid
sequence, environment (i.e., solvent) and conditions (i.c., temperature, pH). Ae-
cording to the thermodynamic hypothesis [8] this most stable protein conformation
corresponds to the one with the lowest (global) minimum free energy. This implies
that at a finite temperature the probabilities of oceurrence of conformation states
will be significantly different than zero only for a distinctly unique low energy low
potential energy conformation. This work addresses this problem at various lev-
els. Firet of all, a deterministic global optimization approach that identifies an
¢-global minimnm potential energy conformation will be proposed. Furthermore,
rigorous upper and lower bounds on the global minimum total potential energy will
he provided. Finally, 2 number of low energy conformere will be identified.

A protein is a polymer chain composed by a sequence of various amino acid
residues connected with peptide bonds. Proteins in nature are composed of only
twenty different amino acid residues. Instead of specifying the coordinate vector for
all atoms in a protein, one can specify all bond lengths, covalent bond angles and
dihedral angles. Under biological conditions, the bond lengths and bond angles
are fairly vigid and thus can he assumed to be fixed at their equilibrium values,
Under this assumption, the dihedral angles along the backbone fully determine the
geometric shape of the folded protein. The names of the dihedral angles of a folded
protein chain follow a standard nomenclature. The dihedral angle hetween the
normals of the planes formed by atoms C}_, N;Cqy; and N;C, iC} respectively is
denoted as ¢; where i — 1 and ¢ are two adjacent amino acid residues. The one
defined by planes R;C.:C! and CaCiN; 1 respectively is denoted as 1); wherae i
and i+ are two adjacent amino acid residues. Also w; is the dihedral angle defined
by the planes C,, ;C{N; 41 and C{N;11C4 i+1. The letter y is utilized to denate the
dihedral angles which are associated with the side groups F;. Also the letter # is
used to name the dihedral angles associated with the two end groups. Figure 1
pictorially illustrates these conveutions. Excellent surveys of the key issues and
approaches for predicting structures of oligopeptides, polypeptides, and proteins
are reported in [41}, [35], as well as in [37].

Polypeptide folding calculations typically employ an empirically derived set of
potential energy contributions for approximating the true potential function of the
protein system. This set of potential energy contributions, called the force field,
contains adjustable parameters that are selected in a such a way as to provide
the best possible agreement with experimental data. The main assumption intro-
duced in molecular mechanics is that every parameter is associated with a specific
interaction rather than a specific molecule (transferabilily assumption). These pa-
rameters are bond lengths; covalent bond angles; bond stretching, bending, or
rotating constants; non-bonded atom interaction constants, etc. Thus, whenever a
specific interaction is present, the same value for the parameter can be used even if
this interaction occurs in different molecules [16]. Many different parameterizations
have been proposed for approximating the force field in protein folding calculations.
Some of the most popular ones are: ECEPP [27, 28, 29}, MM2 [3], ECEPP/2
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[33], CHARMM [10], DISCOVER [12], AMBER [47, 48], GROMOSS7 [44], EN-
CAD [19], MM3 [4], and ECEPP/3 [34]. In this work the ECEPP/3 [34] detailed
potential model is utilized. In this potential madel, it is assnumed that the envalent
bond lengths and angles are fixed at their equilibrium values and the conforma-
tional energy is treated as the sum of electrostatic, nonbonded, hydrogen bond and
torsional contributions, a loop closing potential if the polypeptide contains one or
more intramolecular disulfide bonds, plus the fixed internal conformational energy
of the pyrohdine ring for each propyl or hydroxyprolyl residue contained in the
peptide chain. The latter is implemented by allowing the user two choices far the
pyrolidine geometry: Up or Down. In short, the potential function that ECEPP/3
generates includes the following terms :
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All constants have been appropriately estimated through fitting of experimental
data, and are reported in ECEPP/3 [34].

2. Problem Formulation

The potential energy minimization problem can be formulated as a nonconvex non-
linear optimization problem. Lel ¢ = 1,..., Ngrs be an indexed set describing
the sequence of amino acid residues in the peptide chain. This implies that there
are ¢;,¥;,wi, {t = 1,..., Ngrs dihedral angles along the backbone of the peptide
chain, Alsv let & = 1,..., K be an index set denoting the dihedral angles of the
side group of the i** residue and j = 1,...,JV be an index sct denoting the di-
hedral angles of the amino end group and j = 1,...,J¢ be an index set denoting
the dihedral angles of the carboxyl end group respeclively. Qver these index sets
one can define the side group dihedral angles x:-‘, i=1,...,Nggs, k=1,... K%,
the amino 8Y, j = 1,...,J" and carboxyl Bf", i=1,...,J end group dihedral
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angles respectively. Based on these definitions the potential model minimization
energy problem can be formulated as follows:

min U(d’i’d)’i:wiaxflgjv:g_jc)
subject to —7 < ¢ < w i=1,..., Ngrs
-7 < ¥ <m i=1,...,NrEs
-7 < w < wm t=1,...,Nggs
—r < xF<w i=1,.. Nggs, k=1,.. K (1)
-7 < 9;-\" <m ji=1,...,Jn
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Here U/ is the expression for the total potential energy as a function of the peptide
dihedral angles. The specific expressions comprising U have been described in the
previous section.

Note that U/ is a nonconvex function of these dihedral angles involving a large
[46] number of local minima, even for small peptide systems. These local minima
correspond to metastable states of the polypeptide chain. A single global minimum
defines the energetically most favorable peptide conformation. A large variety of
procedures have been developed for searching the multidimensional peptide ¢oufor-
mational space in an attempt to focus in the neighborhood containing the global
minimum. These procedures draw from one or more of the following basic ideas: (i)
decomposition of the conformation calculations, (ii) use of statistical and/or heuris-
tic conformational information, (iii) further simplifications on potential model, (iv)
stochastic search procedures, (v) mathematical transformations. Most methods
attempt to locate this point by tracing, deterministically or stochastically, single
or multiple paths on the potential energy surface conjecturing that some of them
will converge to the global minimum potential energy point. The key limitation of
these methods is that the obtained conformations depend heavily on the supplied
initial conformation expressing the bias of the researcher towards which 1s the most
appropriate conformation. This is why, in practice, many trial geometries need to
serve as initial points in an attempt (o lessen the initial point dependence. How-
ever, there is no guarantee that important conformations are not overlooked. 'I'he
need for a method that can guarautee convergence to the global minimum poten-
tial energy conformation motivated our initial effort to introduce such a method for
microclusters [21, 22}, and small acyclic molecules [24, 23] allowing for nonbonded
atomic pair interactions. The approach was subsequently extended to include real-
istic potential models like ECEPP/3, [25]. It was shown that this approach could
efficiently identify apart from the global minimum configuration, low energy con-
formers as well as upper and lower bonnds of the global minimnm potential energy
for systermns composed of single residues as well as di-peptides.
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The rest of the paper is structured as follows. Sections 3.1 and 3.2 provide a
brief introduction to the deterministic global optimization algorithm, «BB. Subse-
quently, in Section 3.3 the problein ol identilying the global minimum total potential
energy is formulated and addressed within the framework of BB, We proceed by
discussing in Sections 4.1 and 4.2 a domain partitioning strategy for the identifica-
tion of important demains withiu which the global minimum is most likely to be
found. A novel approach is proposed in Section 4.3 for incorporating such a parti-
tioning within the BB framework and computational studies on four oligopeptides,
namcly, (Ala)s Pro, Met-cnkphalin, Leu—enkephulin, and Decuylycine are presented
in Section 5.

3. Global Minimization of Potential Energy
3.1. Deterministic Global Optimization, «BB

In this section we will present a brief overview of a branch-and-bound global opti-
mization method based on the concept of the difference of conver functions, denoted
as «BB.

The general optimization problem addressed can be formulated as the following
constrained nonlinear optimization problem involving only continuous variables.

min f(x) (PO)
subject to h;(x) = 0, j=1, M
a(x) < 0, k=1,...,K
x¥ < x < xY
figsh € ¢

Here x denotes the vector of variables, f(x) is the nonlinear objective function,
h;(x)} is the sct of nonlincar cquality constraints, and ge(x), &£ —1,.. ., K i the set
of nonlinear inequality constraints. Formulation (P0) in general corresponds to a
nonconvex optimization problem possibly involving multiple local and disconnected
feasible regions. Existing path following tcchniques cannot consistently locate the
global minimum solution of (P0) even if a multi-start procedure are utilized. For
spectal cases of (P0) efficient algorithms have been proposed for locating the global
minimum solution. For the general case, however, of minimizing a nonconvex func-
tion subject to a set of nonconvex equality and inequality constraints there has
been comparatively little work in deriving global optimization methods and tools.

The «BB global optimization approach is based on the convex relaxation of the
original nonconvex formulation (P0). This requires the convex lower bounding of
all nonconvex expressions appearing in (P0). These terms can be partitioned into
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three classes: (i) convex, (ii} nonconvex of special structure, and (iii) nonconvex of
generic structure,

Clearly, no convex lower bounding action is required for convex functions, For
nonconvex terms of special structure (e.g., bilinear, univariate concave functions),
tight specialized convex lower bounding schemes already exist and therefore can be
utilized. The general casc of constrained nonconvex nonlinear optimization prob-
lems as stated in (P0) is studied in [5]. Since the potential energy minimization
of oligopeptides problem has the mathematical structnre of (1) (i.e., nonlinear ob-
jective function subject to box constraints), we will retain only those parts of the
formulation that pertain to the problem addressed in this paper. The terms ap-
pearing 1n the objective function are rewritten equivalently as follows:

min GO0+ Y NCI) P)
EEXO
subject to x < x < xY

where NCj{(x) with x € {z; : i € N¥} and C®(x) denotes a part of the objective
function that may be identified as convex.

A convex relaxation of (P) can be constructed by replacing each generic noncon-
vex term, N C}(x), with one or more convex lower bounding functions. The convex
lower bounding of the generic nonconvex terms NC?: is motivated by the approach
introduced in [23] where it was shown that by considering the dual formulation of
a difference of convex functions problem results in a convex lower bounding func-
tion NC}'*"™" equivalent to augmenting the original nonconvex expression with the
addition of a separable convex quadratic function of (z;, ¢ € N}Y).

NCPEm () — NCOY(x)

+ Y ol (xh %) (2F — ) (2] —x), ko€ K
€N}

0 (ol LU 1 :
where o (x",x") > max{(), zxﬁglng A(x)
Note that o, are nonnegative parameters which must be greater or equal to the

negative one half of the minimurn eigenvalue of the Hessian matrix of CE'C""" over

ef <e; <2V, i€ NQ. These parameters a?}k can be estimated either through
the solution of an optimization problem or by using the concept of the measure
of a matrix [23]. The effect of adding the extra separable quadratic term on the
generic nonconvex terms is to construct new convex functions by overpowering the
noneonvexity characteristics of the original nonconvex terms with the addition of
the terms 2af ; to all of their eigenvalues. The new function NC**°"" defined over
the rectangular domains zf < z; < zV, i € A involves a number of important
properties. These properties are as follows:

e Property 1: NCY°™ is a valid underestimator of NCY.
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o Property 2: NCp*°"(x) matches NC?(x) at all corner points.
s Property 3: N(?E’w””(x) is ronver in T; € [ziL,:rH , i e NE.

e Property 4: The maximum separation between the nonconvex term of generic
structure NCp°°™ and its convex relaxation NC} is bounded and proportioual
to the positive parameters o} , and to the square of the diagonal of the current
box constraints. ,

+ Property 5: The undcrestimators constructed over supersets of the current set
are always less light than the underestimator constructed over the current box
constraints for every point within the current box constraints.

Clearly, the smaller the values of the positive parameters a?}k, the narrower the
separation between the original nonconvex terms and their respective convex re-
laxations will be. Therefore fewer iterations will also be required for convergence.
To this end, customized o parameters can be defined for each variable, and term.
Furthermore, an updating procedure for the «’s as the size of the partition elements
decreases allows for substantial improvement in the convergence process,

Based on the aforementioned convex lower bounding procedures a convex relax-
ation (R) of (P) is proposed.

minC’(x) + } NCi(x) (R)
kexo
+ Z a?,k(.xL.xU) (ﬂff—:ﬂ;) (1’? Lm,-)
FENT
x* < x < xV
and NCR(x)withx € {z; : i€ NJ},

Formulation (R) is a convex programming problem whose global minimum so-
Iution ean he rontinely found with existing local optimization solvers such as MI
NOS5.4 [26]. Formulation (R) is a relaxation of (P) and therefore iis solution is a
valid lower bound on the global minimum solution of (P).

In the next section, we will see how this convex lower bounding formulation (R)
can be utilized in a branch and bound framewark for locating the global minimum
solution of {P).

3.2, Global Optimization Algorithm, «BB

A global optimization procedure, BB, is proposed for locating the global minimum
solution of (P) based on the refinement of converging lower and upper bounds.
Lower bounds are obtained through the solution of convex programming problems
(R) and upper bounds based on the solution of {P) with local methods.

As it has been discussed in the previous section, the maximum separation be-
tween the the generic nonconvex terms and their respective convex lower bounding
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functions is proportional to the square of the diagonal of the rectangular parti-
tion element. Furthermore, as the size of the rectangular domains approaches zero,
these maximum separations go to zero as well. This implies that as the current
box constraints [x*, xV] collapse into a point; (i) the maximum separation between
the original objective function of (P} and its convex relaxation in (R) becomes
zero; and (1) by the same argument, the maximurn separation between the original
constraint set in {P) and the one in {R) goes to zera as well. This implies that
for every positive number €; and x there always exists a positive number § such
that by reducing the rectangular region [x%,x"] around x so as ||x¥ — x|| < 6
differences between the feasible region of the original problem (P) and its convex
relaxation (R) become less than e;. Therefore, any feasible point x° of problem
(R) (even the global minimum solution) becomes at least ¢ ;—feasible for problem
(P) by sufficiently tightening the bounds on x around this point.

The next step, after establishing an upper and a lower bound on the global mini-
mum, is to refine them. This is accomplished Dy successively partlilioning the initial
rectangular region into smaller ones. The number of variables along which subdi-
vision is required is equal to the number of variables x participating in at least one
uonconvex term in formulation (P). The partitioning strategy involves the succes-
sive subdivision of a rectangle into two sub-rectangles by halving on the middle
point of the longest side of the initial rectangle (bisection). Thercfore, at each iter-
ation a lower bound of the objective function of (F) is simply the mintmum over all
the minima of problem (R) in every sub-rectangle composing the initial rectangle.
Therefore, a straightforward (bound improving) way of tightening the lower bound
is to halve at each iteration, vuly the sub-rectangle responsible for the infimum of
the minima of (R) over all sub-rectangles, according to the rules discussed earlier.
This procedure generates a non—decreasing sequence for the lower bound. An non-
increasing scquence for the upper bound is derived by solving locally the nonconvex
problem (P) and selecting it to be the minimum over all the previously recorded
upper bounds. Clearly, if the single minimum of (R) in any sub-tectangle is greater
than the current upper bound we can safely ignore this sub-rectangle because the
global minimum of {P) cannot be situated inside it (fathoming step).

Because the maximum separations between nonconvex terms and their respective
convex lower bounding functions arc bounded and continuous functions of the sizc
of rectangular domain, arbitrarily small ¢ feasibility and e, convergence tolerances
are reached for a finite size partition clement.

The basic steps of the proposcd global optimization algorithm and its convergence
proof to an e-global solution are described in [23].

3.3. Minimization of the Conformation Energy using « BB

The deterministic branch and bound type global optimization algorithm BB just
described will be utilized so as to bracket the global minimum solution by construct-
ing converging lower and upper bounds. These bounds are successively refined by
iteratively partitioning the initial feasible region into many subregions as was pre-
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viously described. Upper bounds to the global minimum can be obtained by local
minimizations of U. Lower hounds are obtained by minimizing a convex function L
which is always less than the original nonconvex function U. This funetion L can he
constructed by augmenting U through the addition of a convex separable quadratic
term for each dihedral angle.

Nrgs

L =U+{ Z%,i(¢f—¢i)(¢?*¢i)+
s
D o (0 — ) (v —wi) +
vaps
Z Oy g (w;[‘ - wi) (%U — w,') +

i=1

Npgs K

S S en (- xf) (Y - xk) + (2)
i=1 k=1

N

o (5o ()

(&
_leaj,ga (ef'L - af) (5_;?1” ~ 9;3) }
J:

Note that ¢f, f,w{’,xf’L,Hf’L,Hf'L and ¢E,w}',w,§],xf'[},6‘.\r’”,ﬂf’[} are lower
and upper bounds respectively on the dihedral angles ¢;, %, wi, x§, 0,05, The
various « parameters are the ones defined in Section (3.1}. «BB has been interfaced
with ECEPP/3 so as to provide a detailed model of the conformational energy.

‘I'he computational requirement of awBH 1s proportional to the number of vari-
ables on which branching will occur. As a result we should judiciously choose those
variables. Qualitatively, a variable on which branching occurs is a variable that
participates in a non—convex term and furthermore is expected to greatly influ-
ence the location of the glabal minimuni. The recent work of {1, 5, 6] provides a
number of key principles so as to identify such important variables, and presents
the merits of these principles based on extensive computational studies. It has to
be pointed out that should one decide not to branch on a specific variable, the
resulting underestimator is stifl a valid one and properly underestimates the glohal
minimurm.

While addressing the problem of protein folding, there exists ample evidence that
the most impaortant variables, that is, the ones on which the global minimum is
expected to more sensitive to, are the back-bone dihedral angles. Based on this
observation we treat the back—bone dihedral angles as the global variables on which
branching is being performed. The dihedral angles associated with side chains, as
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well as the w’s are treated as local variables, that is, no branching is being performed.
Finally, the user is free to decide as to whether a third set can be defined. This
sets include the fized variables, that is, variables which will have constant values.
Obviously, the partitioning of the variable set is selected by the user, and the user
can specify which dihedral angles belong to which category. The partitioning just
deseribed simply defines one such possible instance.

4, Analysis of Oligopeptides

The BB coupled with ECEPP/3 has successfully addressed the calculation of the
global minimum of single-residue and di-peptides. Various computational results
were presented in [25]. The mathematical problem addressed was of the form of
(1), whereby the dihedral angles were allowed to vary in the interval [, 7]. In
other words no prior knowledge regarding possible ranges within which the dihedral
angles could vary was used.

Addressing the conformation of oligopeptides it became apparent that the prob-
lem requires more intensive computational effort. The primary reason for this is the
quality of the generated lower bounds on the global minimum. In order to address
the problem of oligopeptides successfully a meaningful reduction on the bounds of
the variables is proposed. These should be such that a substantial size reduction
is induced, thus improving the quality of the lower bounds, but also the reduced
domains should not exclude regions that contain the global minimum conformation.
Having tighter bounds on the global variables results in much tighter lower bounds,
provided by the solution of (2), thus improving the computational efficiency of the
method.

4.1. Distribution of Dihedral Angle Values

Using hard-sphere models of the atuns and fixed geometries of the bonds, Ra-
machandran and colleagues, [11], derived regions in terms of the allowed values of
the {¢, ¥) dihedral angles. The key result of their calculation was that for ev-
ery paturally occurring amino-acid the structure of these regions remain almost
identical.

Similar results were obtained later on, [45], when the distribution of the (¢,
¥) angles were recorded for configurations that correspond to low conformational
energies based on empirical potential functions (ECEPP/3). In the work of [45],
all the dihedral angles were kept constant except the (¢, ) angles,

Our approach is along these lines and Figure 2 prescnts the (¢, ¥) value distribu
tion for almost 20,000 minimum energy configuratious of the 20 naturally occurring
amino acids. [t should be pointed out, that in our computations none of the di-
hedral angles are assumed to be fixed, in fact all ¢, ¢, w and x’s arc troated as
variables. A total of 1,000 local minima per amino—acid are plotted. Obviously,
there is fair degree of repetition and furthermore, a large number of them do not
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correspond to physically favorable configurations, although these might be mathe-
matical minima. A substantial number of allowable configurations, corresponding
to local minima have been plotted. It is iimportant to emphasize the consistency of
the results based on a) the hard sphere model, b) the lower energy conformations,
and ¢} conformations corresponding to local minima. It is clear that regions of
very high density can be identified which clearly suggests that the dihedral angles
do not assume arbitrary values. The important question that one has to address
is whether patterns based on isolated single-residue data could be used to derive
bounds on the dihedral angles when these residues are part of a larger molecule.

It was suggested in [18] to analyze the dihedral angle distribution based on the
values they assurne on polypeptides whose native configuration is known via ex-
perimental data. The resulting {$, %) maps for the participating residues revealed
patterns very similar to the ones chtained when the residues were considered to be
isolated. The main point the authors in [18] conveyed is the fact that extrapolating
based on the single-residue approach may fail to consider conformation-dependent
interactions between residues. Therefore, one should attempt to identify the dihe-
dral angle distribution of specific patterns.

[n this direction, we performed an analysis of 95 proteins from the Brookhaven
X-ray data bank, [9]. The scope was to derive values for all dihedral angles of the
participating naturally occurring amino acids based on experimental data. Qur goal
was to identify the existence of specific patterns when these residues are a part of a
large molecule and based on these observations to detect whether meaningful (i.e.,
ones that do not exclude global solutions) patterns could be identified. Figure 3
depicts the {¢, ¢) map for all the alanine residues identified in the data hank. A
total of 1,577 occurrences were recorded. It is interesting to note what happens
when one considers the angle distribution of modules composed of more than one
alanine residue. Figure 4 depicts the distribution of the ala—ala patterns. Clearly,
the (¢, 1) become less scattered, and if one considers triplets, that is, ale-ala—ale
as in Figure 5, the distribution becomes even more focused. Should this evidence
he eonsidered nniversal three key nhservatinons can he drawn -

1. All four approaches just described fully agree on the qualitative characteristics
of the dihedral angle distributions. The implication of this result is the fact
that an underlying symmetry exists aud it was properly predicted based on our
computational experiments.

2. Tt appears as if the single-residue approach defines a superset of the possible
values that the dihedral angles can assume. Therefore, one should not expect to
miss the characteristics of a particular residue when it is considered as a part of
an oligo/poly—peptide. Therefore, generalizations based on single—residne data
appear to be safe.

3. Based on the results obtained from the 95 proteins of the Brookhaven X-ray
data bank considering combinations of single residues appears to be substan-
tially reducing the range of possible values for the dihedral angles. Note that a
substantially smaller sample is being used. Only 168 occurrences of ala-ala were
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observed and 24 oceurrences of ale—ala—ala. Interestingly enough though, one
should observe that the distribution of the values for the ala—ala-ala pattern
seems to point towards the region that defines the right—-handed o helix which is
presumnably the configuration of choice for the poly(L-alanine) macromolecules,
[38]. In other words, based on the patterns that were identified through the
analysis of the 95 profeine, meaningful tight bounds for the poly(L-alanine)
have been detected. It should be pointed out however that one should never
neglect the risk that the substantial reduction of the (¢, ) distribution essen-
tially postulates the structure of the poly-—peptide. If we consider to focus on
the region identified in Figure 5, then we are essentially postulating that the
solution can only be a right-handed a-helix. Such generalizations are extremely
dangerons and the risk of missing impartant information in regard to the global
minimum is obvious.

The computational ramifications of these results are very important. One should
think in terms of the high dimensionality of the problem in order to identify that if
the domain of each variahle is halved, for example, the overall domain, for the n—
dimensional case is being reduced by a factor of 2% We believe that very important
information can be derived based on the existence of patterns. Results based on
single-residue and multiple-residue patterns will be presented, that will show the

viability of the proposed approach.

4.2, Partitioning the Search Space

In this section, we will present the procedure for reducing the size of the search
domain without excluding the regions of interest, that is, the regions where the
global minimum conformation may lic. It will be argued that the range of values
for the various dihedral angles, ¢, ¥, w, x, is not arbitrary for each independent
naturally occurring amino—acid and that distribution patterns can be derived if one
analyzcs how these valucs arc distributed in a large number of polypeptides.

These results are being presented, in the form of histograms denoting the fre-
quency of occurrence, thus allowing us to identify, per residue and per dihedral
angle of that residuc, how these valucs arc being distributed. Based on the al-
gorithm used for determining these values the last dihedral angle of the side for
each residue, that is a member of a large polypeptide, can not be determined and
is therefore treated as a free angle with an arbitrary value. Based on the single—
residue distributions, correlations will be derived that define regions in a higher
space that contain the maximum number of occurrences of these dihedral angles.
Results regarding the native conformation of four oligopeptides will be presented,
and we discuss the dihedral angle distribution of the aminc-acids composing these
oligopeptides, namely iyrosine, glycine, phenylalanine, methionine, leucine, ala-
nine, and proline.
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2.
3.

tyrosine : The dihedral angles of interest are ¢, ¥, w, x1, and y3 *. Fig-
ures (6-10) depict the distribution of the tyrosine angles tn a total of 881

occurrences in various polypeptide molecules.

glycine : The dihedral angles of interest are ¢, 4, w Figures (11-13) depict
the distribution of the glycine angles in a total of 1529 occurrences in various
polypeptide molecules.

phenylalanine : The dihedral angles of interest are ¢, %, w, and x; 2. Fig-
ures (14-17) depict the distribution of the tyrosine angles in a total of 861
occurrences in various polypeptide molecules.

methionine : The dihedral angles of interest are ¢, v, w, x1, x2, and y3 3.
Figures (18-23) depict the distribution of the tyrosine angles in a total of
327 occurrences in various polypeptide molecules.

leucine : The dihedral angles of interest are ¢, ¥, w, ¥1, x2, *. Figures
(24-28) depict the distribution of the tyrosine angles in a total of 1543
occnrrences i varicous polypeptide molecules.

alanine : The dihedral angles of interest are @, ¥, w ®. Figures (29-31)
clearly define two regions of interest. 1577 occurrences of alanine were
detected.

proline : The dihedral angles of interest are @, 1, w and shown in Figures
{32-34). 38 occurrence of proline were identified.

The following important observations have to be made based on these results:

13

It is clear from these figures that a tremendous symmetry exists and that the

values of all dihedral angles are by no means random.

w seems to be restricted in a range of values centered around .

The side-chain dihedral angles (i.c., the x’s) seem to be distributed, in a struc-
tured way, throughout a wide range of values. Most previous attempts neglect
the importance of the x values. Although in large molecules the primary dihe-
dral angles responsible for identifying the correct folded state are the backbone
dihedral angles, it scems as if side-chain dihedral angles are expected to play
an important role in determining the energetically most stable configuration.

Based on the distributions observed in Figures (6 — 34), reduced domains for the

dihedral angles of various amino acids can be identified. By observing Figure (11),
for example, one can decude that with respect to the ¢ angle of glycine we can
identify two distinct regions. The first in the interval [—180, ~30], and the other in
the interval [30, 180]. On the other hand, with respect to the ¥ values, Figure (12),
we can observe that the values are distributed throughout the range [—180, 180]
and therefore we select to define the two regions [—180,0] and [0, 180]. By using
similar argurnents we end up in the regions which are defined in Table 1. Note that
Table 1 consists of a number of regions based on the partitioning of the dihedral
angles.

b



14 ANDROULAKIS, MARANAS AND FLOUDAS

Table /. Bounds on dihedral angles. 1: bounds hased on the —ala—ala-ala— pattern,
2: bounds based on the —ala~ pattern, 3: The ¢ value for the down packering of
proline that ECEPP3 uses is -68.8

| @ P w X1 X2 Xa X4
tyr -180,0  -75,50 160,200 -180,180 -180,180 -180,180
50,175
gly | -180,-30  -180,0 160,200
30,180 0,180
phe | -180-50  -75,50 160,200  -180,180 -180,180
50,175
met | -180,.50  -75,50 160,200  -180,180 -180,180 -180,180 -130,180
50,175

leu | -180,-50  -75,50 160,200 -180,18¢ -180,180 -180,180 -180,180
50,175

alal | -150,-50 -100,0 160, 200 -180, 180
ala? | -180,-50 -75,-25 160,200 -180, 180
~180,-50 50,175 160, 200  -180, 180
pro 68.8° -75,0 160, 200
150,200 160, 200

It should be noted finally that significant reductions can be derived only for the
backbone dihedral augles. The side chain augles, ¥’s, are distributed in a strucured
yet not simply described, nsing discrete domains, sub-regions. If one defines the
sub—intervals of the y angles using similar arguments the initial number of snb—
regions to be examined will increase, as will be explained in the following section.

4.3. A Novel Scheme for Partitioning of Domains in a«BB

Based on the above, for every residne and every dihedral angle in that residne, a set
of reduced domains for the backbone dihedral angles can be defined. Consider for
example the ¥ angle of tyrosine, that is, i = tyrosine. For the dihedral angles, i, we
have identified two domains, ¥;,, iy = 1,..., Ny with Ny the number of domains
for the ¢ angle of the i residue, and ¥; = {(=75,50),(50,175)}. Similarly, these
quantities are being defined for all other dihedral angles.

In this case the original problem as defined in (1) is now defined as follows :

min U(¢iy¢i:wilezg_?[!gjc)

subject to ¢; € @iy, ig=1,..., Ny, i=1,...,NrEs
¥, € Wy, iw=1,...,Ny,i=1,...,Nrgs
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Table 2. Domains for Met—enkephalin

el 1w el bal Ix2l o Ixsl o Ixal | M
tyr 1 2 1 1 1 1 2
gly 2 2 1 4
Ely 2 2 1 4
phe 1 2 1 1 1 2
met 1 2 1 1 1 1 1 2
N | 128

wi € 4, w=1,... N, i=1,...,Nggs
xf e XE, i,=1,... NEt, i=1,. Nags k=1,..., K$)

A= O;x, =1 N =1 I

€ O, i =1 N, i=1,...,J¢

Clearly, the allowable dihedral angles for each residue should belong to one of the
following domains:

Dj' = (I)i‘bX\DiWXQ.,’wXXfx
Jjio= L. . N
Ni o = [Dig][ Wiy [l XE,

where M; is the number of dihedral angles with the maximum number of domains.
Based on the above definitions and the partitioning of the search space, the total
number of initial domains is given by :

Nres
N o= (] ~le;yleel

i=1

Note that “| e |7 denotes the cardinality of the set. These domains correspond to
the cartesian products of all the sub—domains D;;, ji = 1,..., N;.

As an illustrative example, let us consider the molecule of Met—enkephalin. There
are a total of 5 residues, Nggps = 5. Table 2 provides the values for N; and N for
the amino-acids participating in Met-enkephalin.

The aforermnentioned procedure has now defined for Mel-enkpehalin a finite num-
ber of domains I); C [—m, m]¥P4 i =1,...,128, where NDA is the total number
of dihedral angles which constitute the starting domains for «BB. Furthermore,
thiis procedure can be nicely integraied wilthin a distributed framework for BB
that is under development, [7]. From an implementation point of view, instead of
initializing « BB with a single domain, that is subsequently partitioned based on the
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Table 2. Dihedral angles at the global minimum po-
tential energy conformation of Ac—Alay—Pro-NHMe,

| ] ¥ w X1
Ac -179.997  -178.210
Ala -71.102 -27.158 178.745 -178.378
Ala -70.349 -35.997 183.369 61.303
Ala -80.986 -36.950 1B4.664 -58.108
Ala -133.711 71.251 176.872 179,263
Pro -68.8 -24,235 179.832

NHMe 59.915

steps of the algorithm, N domains are being created which are all assigned appro-
priate values for their corresponding lower bounds. In other words, aBB is being
initialized with a set of consistent domains provided by the domain partitioning
studies that can provide tight initial lower bounds. Note that had we partitioned
turther the domains of the y angles, a substantial increase in the number of initial
domains would have occurred. In order to avoid that we treat the x angles as local
variables, in the context discussed earlier, based on the assumption that the effect
of the side chain will be nol as important as the effect of the hackbone structure in
the prediction of the eorrect conformation.

5. Computational Studies

The proposed approach has been tested on a number of oligopeptide potential en-
ergy minimization instances. The selected relative convergence tolerance is 1072
and the computational requirements reported in seconds are on an HP-730 work-
station. In all cases we treat as global variables the #’s and #’s and as lacal all
the remaining, (i.e., w’s and x’s) where appropriate. In all of our computational
studies the value of the o parameter was set to 3.5,

5.1. N-Acetyl-N'-methylamide of Alas;—Pro

The first example is concerned with the lowest potential energy structure of Ac—
Alas—Pro-NHMe involving 21 dihedral angles. This problem was first proposed in
[34] for evaluating the capability of ECEPP/3 to correctly describe the energetics of
the atomic interactions. The global minimum potential energy conformation of Ac—
Alas—Pro-NHMe is characterized by a potential energy value of —18.91 kcal/mole.
Note that this potential energy value is slightly better than the one reported in [34]
(—18.82 kcal/mole). Table 3 summarizes the values of the 21 dihedral angles at
the global minimum solutions. A plot of this conformation is shown in Figure 33.
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In the study of Alag—~Pro results for both the single and multiple residue patterns
were constdered. An analysis of the pattern created while studying the complex
—ala—ala—ala- reveals a very tight domain for the ¢ and ¢ angles. Thercfore, we usc
these bounds for the backbone angles of the first three alanine residues. In regard
to the fourth alanine residue, that is, the one directly connected to the proline
molecule, we allowed the dihedral angles to vary according to the dornains identi
fied in Table 1. This arrangement results in an initial partitioning of 4 domains.
Convergence to the optimal solution was achieved after 422 iterations and 2,816 s.
It should be pointed out that a strong local minimum exists within only about 0.3
keal/mol higher energy whose vector of dihedral angles is practically identical to
the global minimum with only the exception of the ¥ angle of proline. The global
minimum corresponds to a distorted right~handed o« helix, and the source of the
distortion is the influence of the proline.

5.2, Met-enkephalin

This example illustrates the application of the proposed approach on a bench-
mark moleenlar conformation problem. It involves the identification of the global
minimum total potential energy conformation of the penta—peptide molecule Met-
enkephalin. Met—enkephalin (H-Tyr-Gly-Gly-Phe-Met-OH), is an endogenous opi-
oid linear penta—peptide found in the hnman brain, pituitary, and peripheral tissues.
Its biological function is related with the endogenous response to pain and a large
variety of physiological processes. Met-enkephalin consists of 75 atoms and 16 in-
volves 24 independent dihedral angles, giviug rise to a very complex conformational
space invelving a plethora of local minima which are estimated in the order of 101!
([20]). Met-cnkephalin represents a very challenging conformation study because
of (i) the large number of local minima which make the energy hypersurface rather
burnpy, (i1) the existence of strong local minima that most local optimization algo-
rithms terminate, (iii) the location of these strong local minima is uot necessarily
close to the global minimum even though there are strong local minima within 1.0
kcal/mole, (iv) the very special initialization procedures that need to be devised
so as to reach the best solution, (v) the failure of any local eptimization method
if random 1nitial peints are considered, and (vi) the reported failure of local opti-
mization methods to locate the global solution even though the starting point is
very close to the global minimum.

‘I'he global minimum potential energy conformation of Met—enkephalin is shown in
Fignre 36. The values of the 24 dihedral angles at the global minimum conformation
are given in Table 4,

As one can observe from ligure 36 the global minimum configuration exhibits a
bend along the N — (' peptidic bond of Giy® and Phe?, and it represents a type
II' B-bend, [43], consistent with observations made earlier, {14].

Based on the analysis presented earlier, for all residues the ¢ domain is parti-
tioned in two sub-domains and furthermore the ¢ domain of the glycine residue is
also partitioned in to two domains. Table 2 presents the corresponding partitioned
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Tatle 4. Dihedral angles at the global minimum potential energy conformation

of Met—enkephalin.

| ¢ B w X1 x2 X3 X4

Tyr -83.457 155.787 -177.159 -173.205 -100.544 13.836
Gly | -154.298 86.001 168.507
Gly 82.964 -75.1158 -169.939

Phe | -136.880 19.079 -174.065 58.843 -85.543
Met | -163.465 160.944 -179.794 52.884 175.268 -179.851 61.421

domains. This results in a partitioning of 128 domains that are considered in the
mnitialization step. Based on the partitioning according to the single residue data we
define a set of problems, on disjoint domains, that are to be solved. In other words,
we consider that the first 7 levels of the branch and bound tree have collapsed into
one level, the initial one, composed of 128 nodes, where each node represents one
of these domains. Unlike other approaches, no assumptions are made regarding the
values of the y dihedral angles and they are allowed to vary in the entire interval
[—m, 7]. In terms of the computational requirements it takes BB 977 iterations,
and 4,669 seconds in order to converge within the required tolerance. It should be
noted that the aforementioned CPU time includes the determination of about 100
low energy conformations close to the global minimum of —11.707. At each iteration
of the #BB method, the solution of an upper bounding lacal optimization prohlem
and two convex lower bounding problems are needed. For all three problems the
nonliuear solver requires 2-4 CPU seconds per iteration and within this time there
are on the average 400 calls to ECEPP/3. At each call to ECEPP/3, the input is a
set of values of the dihedral angles. Then, ECEPP/3 transforms the internal coor-
dinates into cartecian coordinates, performs the function and gradient evaluation
in the cartesian space and transforms them back into the internal coordinates to be
used by the local optimization solver. Each call to ECEPP/3 requires 0.005-0.01
CPU seconds, and hence there exists a rather fast calenlation of the functions and
gradients which in turn require rapid calculation of the nenbonded distances from
the internal coordinates.

Over the years, Met—enkephalin has received a fair amount of attention and there
exists an abundance of computational results that could be used for comparison
purposes. Based on the available computational experience the following points
can be made:

(i) Comparison of «BB with other approaches

At the outset of such a comparison, it should be emphasized that the «BB (i)
offers theoretical guarantee of determining an e-global minimum solution for
twice-differentiable optimization problerns with analytical functions, (ii} identi-
fies valid upper and lower bounds on the global solution and (ii1) identifies local
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optima which are close to the global minirmum one during the global optimum
search,

‘The primary objective in such a comparison of « BB with other more standard
procedures is to investigate the computational effort required by the «BB in
contrast to the other approaches. Since Met-enkephahin has been studied ex-
tensively in the literature with a variety of methods, reported results for several
different methods will be presented. Note that due to the difficulties in the
search for the global minimum structure of Met-enkephalin there exist a few
studies that have treated all 24 dihedral angles as variables, while most of the
studies have considered either 10 dihedral angles (i.e., ¢, and 4) or 19 dihedral
angles (i.e., ¢, ¥, and x).

Table 5 summarizes the computational requirements for addressing the same
problem with a variety of various approaches. Based on the above results we
can clearly see that «BB compares favorably with most of the widely used
methods, and furthermore it provides additional information regarding not only
bounds on the global minimum total potential energy, but also on bounds on the
values of the dihedral angles. Note also that BB unlike simulated annealing
and/or Monte Carlo approaches, is a domain based method and not a point
based method. Therefore, one identifies regions of the search space rather than
singletons.

(ii) Comparison with local optimization methods

A case against using global optimization methods is often made based on the
cormmputational requirements and is further suggested that an equivalent amount
of local runs would have produced similar results. In order to test such a
statement, a nurnber of local runs equivalent to the number of times the npper
bound problemn was solved with a BB were performed. Based on the results just
presented aBB required about 1,000 iteratious implying that the uon—convex
problem was solved about 1,000 times so as to provide valid upper bounds
for «BB. An equivalent amount of local runs were performed from randomly
generated starting points and the results were recored.

The configuration with the lowest potential energy that is obtained has a value
of E = —8.002 kcal/mole which is aver 30% higher in energy than the global
minimum potential energy conformation with a potential energy value of E =
—11.707 keal/mole. These results clearly suggest the inadequacy of multistart—
like local optimization techniques to address such a camplicated problem.

It should also be pointed out that [32] provided a direct coraparison of the
Simulatcd Annealing, SA, method with the Monte Carlo Minimization, MCM,
method for Met-enkephalin. The conclusions drawn from this comparison are :
(1} the SA converges to a lower energy structure faster than the MCM method
but the SA does not converge to the global minimum in any of the 24 randomly
chosen initial conformations whereas the MCM does converge; (ii) the energy
difference between the minimna reached by the two methods is typically 5-15
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Table 5. Computational results on Met-enkephalin

Method & Nuar CPU Computer
Mante Clarla Minimization 19 2-R hrs TRM 2nan
[20] 24 10 hrs TBM 3090
Electrostatically Driven Monte 19 2-3 hrs IBM 30590
Carlo [39] 24 10 hrs IBM 3090
Diffusion Equation 19 20 min IBM 3090
(17]
Self-Consistent IMultitorsional 10 100 min IBM 3080
Field [36]
Multicanonical Simulated Annealing 19 6. hrs IBM RS600
[15]
Simulated Annealing 24 2.5 hrs Apollo DN1000
[30], 1991}
Threshold Simulated Annealing 24 1.5 hrs Apolle DN1000
(31]
Simulated Annealing with Monte Carlo 24 2 hrs CRAY X-MP
Minimization [13]
Simulated Annealing with Monte Carlo 24 1.2 hrs CRAY-25, 4 processors
Minimization [42]
Monte Carlo Minimization vs. Simulated 24 1.5-4 hrs IBM 3090
Annealing [32]

aBB | 24 1.3 hrs HP-730

keal/mole in favor of MCM; (i) even though the SA is followed by local energy
minimization the global optirnum solution cannot be reached (i.e., there was
an energy decrease of 2.3 kcal/mole but it was far from the global optimum
by 6 kcal/mole), and the RMS deviation was not improved; {iv) even though
instead of nsing the final conformation reached at the end of a given temperatnre
interval, the minimurn energy conformation encountered during that interval
was used as the starting point for the next (lower) temperature interval, the
global minimum structure could not be reached {i.e., there was a decrease of 2
kecal/mole in energy).

(iil) Low energy conformers

One of the primary advantages of BB, 1s that several low energy conforma-
tions are also provided during the global optimization search. Such information
is very important. Table 6 summarizes five low energy conformers of Met-
enkephalin along with their RMS deviation values, in cartesian coordinates,
when compared to the global optimum structure. Note that these are strong
local minima and if we initiate a search from these structures we cannot obtain
the global minimum conformation. Alse note that this occurs even though the
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Tabl: 6. Low Energy Conformers with
RMS deviations computed in the carte-

sian space.

Conf, Na. | U | RMS deviation
1 -11.707 | Global Minimurmn
2 -11.696 3.203905
3 -11.164 1.132507
4 -11.117 1.196889
5 -10.781 3.175264

Table 7. Dihedral angles for Leu—enkephalin.

| & ¥ w X1 X2 X3 X4

Tyr 102.135 138309 -166.873 -163.758 79.920 -154.795

Gly 00.000 60.323 179.446

Gly G9.574 -80.997 174,502

Phe | -101.036  -24.937 -172.496 73.661 86.759

Len -81.082 131.465 177.678 -178.432 65.431 -67.792  -180.500

RMS deviation values of these local optimal do not differ substantially from the
global optimnum structure. 1n fact, all these five conformations exhibit similar
hairpin structures as the global minimum one,

A

5.3. Leu—enkephalin

This peptide is also an endogencus pentapeptide much like met-enkaphalin with the
only difference being the fact that methionine has been replaced by leucine. Fig-
ure 37 shows the obtained minimum energy conformation of the isolated molecule
which is once again a type [I’ §—bend around the Cly® — Phe* backbone region,
[14], similar to the one observed for Met—enkephalin. Using a similar approach for
initiating «BB, it takes 1027 iterations and 5,209 s. in order to converge within the
required tolerauce, with a total potential energy of £ = —9.332 kcal/mole. The
values of the 24 dihedral angles are given in Table 7.

5.4, Decaglycine

This example concerns the minimization of the total potential energy of a larger
oligopeptide , namcly decaglycine. Decaglycine consists of 30 dihedral angles that
are to be optimized and was studied very thoroughly by [40] using the EDMC
method coupled with ECEPP/2. The number of local minima is enormous and
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these metastable structures correspond Lo partially right-hand and left-hand -
helices. Based on the computational experience available for this oligopeptide a
unique starting region was defined whose bounds were set to be 60 degrees around
the best solution reported in [40]. It took @BB a total of 102 iterations and about
14,000 secands to identify the configuration with £ = —11.642. The generated helix
is shown in Figure 38. Clearly, the computational requirements is an indication of
the difficulty of the problem. Tt should be pointed out that glycine is flexible and
can assume a large number of configurations without introducing any substantial
amount of steric interactions. Along those lines, one should consider patterns of
more than one residues so as to reduce the computational effort.

5.5. Computational Complexity

Based on the computational results presenied in this work, as well as on previous
results {25] that we have obtained within the framework of BB, the behavior of this
approach is considered to be fairly consistent. The CPU requirements are in the
order of n® and the study of Met—enkephalin showed that they compare favorably
with Monte Carlo and Simulated Annealing methods.

6. Conclusions

In this paper we presented a systematic procedure for identifying (i) the global
minimum energy conformation of oligopeptides, (i1} upper and lower bounds on
the global minimum energy, and (iii) several low energy conformers. The proce-
dure is based on the deterministic global optimization algorithm «BB and uses the
ECEPP/3 poutential euergy model in a unified framework. Distribution patterns of
the various dihedral angles of the naturally occurring amino acids were determined
based on an analysis of a large unmber of proteins whose native configuration was
known experimentally. Analysis of single residue data allowed the identifieation of
domains in the (¢, ¥) space with high probabilities. Combinations of these domains
defined the starting points for «BB. The computational efficiency of the method
was demonstrated by identifying the global minimurm encrgy confoermation of the
three penta—peptides, namely Met—enkephalin, Len-enkephalin, and Ac—Alag-Pro-
NHMe, as well as the deca-peptide decaglycine. Extensions of this work into an-
alyzing pattern formation of multiple residuc building blocks that would allow to
address poly-peptides is in progress. The proposed approach provides a natural
decomposition of the search domain and is easily parallelizable.

Is should be peinted out that the global optimization approach « BB offers theoret
ical guarantee of attaining a global optimum solution for general twice—differentiable
nonlinear optimization problems in which the objective function and constraints are
provided analytically. In this work wo cruploy fixed values of the o parameter and
use the force field ECEPP/3 for the function and gradient evaluations and not an
analytical expression for the abjective function even though an analytical mapping
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exists, As a result the issue of providing theoretical guarantee for the combined
ECEPP/3 — aBB approach still remains. Work in this direction is based on rigorous
bounds on the minimum eigenvalues [2] and is currently pursued.
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Notes

X
X
X

[ R

3 can not be determined based on the information provided by the PDB-files
2 can not be determined based on the information provided by the PDB-files
can not be determined based on the information provided by the PDB—files

S

3 and x4 can not be determined based on the information provided by the PDB-files

1 can not be determined based on the information provided by the PDBfiles
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Figure 1: Dihedral angles in a protein
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Figure 2: (¢,v) map denoting backbone conformational states for 20,000 minimum
configurations of the naturally occuring amino acids
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Figure 7: % of tyrosine
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Figure 16: w of phenylalanine
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Figure 30: ¥ of alanine

Figure 31: w of alanine .
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Figure 35: Plot of Ac-Alay—Pro-NHMe conformation, E* = —18.910 kealfmole

Figure 36: Plot of Met-enkephalin conformation, £* = —11.707 keal /mole
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Figure 37: Plot of Len—enkephalin conformation, I* = —9.332 kcal/mole

Figure 38: Plot of decaglycine conformation, E* = —11.642 kcal/mole



